第77章 尚有一题,余究之近四十载(1/2)
2019.上个世纪最具启发性和显着性的成就,是非欧几何的发现。——希尔伯特,d.
引自G. d. 菲奇为曼宁所着《第四维度浅释》(纽约,1910年)所作的引述,第58页。
上世纪最富启迪、最着之成就,莫过于非欧几何之发见。——希尔伯特,d.引自菲奇于曼宁《第四维度浅释》(纽约,1910年)所引,五十八页。
2020.非欧几何——人类智识解放者中的先驱……——凯泽,c. J.《数学基础》;《科学:宇宙史》,第8卷(纽约,1909年),第192页。
非欧几何——人类智识解放者中之先导……——凯泽,c. J.《数学基础》;《科学:宇宙史》,八卷(纽约,1909年),百九十二页。
2021.每位高中教师都必然要对非欧几何有所了解,因为它是少数借助某些流行语在更广泛圈子里为人所知的数学分支之一,因此任何教师随时都可能被问到相关问题。物理学中也有许多此类内容——几乎每项新发现都是如此——它们通过某些流行词汇成为大众话题,因此每位教师当然必须了解。试想一位对伦琴射线或镭一无所知的物理教师;一个无法介绍非欧几何的数学家,给人的印象也好不到哪里去。——克莱因,F.《高观点下的初等数学》(莱比锡,1909年),第2卷,第378页。
每位中学教师皆必知非欧几何一二,因其为数学中少数借流行语传于广众者,故师者随时可能被问及。物理中亦多此类——几每新发现皆然——借流行语成俗谈,故师者必当知晓。试想物理师不知伦琴射线或镭,其状可知;数学家不能言非欧几何,亦类于此。——克莱因,F.《高观点下的初等数学》(莱比锡,1909年),二卷,三百七十八页。
2022.罗巴切夫斯基之于欧几里得,就如同维萨里之于盖伦,哥白尼之于托勒密。事实上,后两者之间存在一种颇具启发性的相似性。哥白尼和罗巴切夫斯基都有斯拉夫血统。他们各自给科学观念带来的革命如此巨大,只能彼此相互比拟。这两次变革之所以具有超凡的重要性,是因为它们都是对宇宙概念的变革……凭借这两次革命,作为人类知识对象、因而也是人类兴趣所在的“宇宙”“宏观世界”“万物”的观念已然崩塌。——克利福德,w. K.
《演讲与论文集》(纽约,1901年),第1卷,第356、358页。
罗巴切夫斯基之于欧几里得,犹维萨里之于盖伦,哥白尼之于托勒密也。实则,后二者间有可鉴之相似。哥白尼与罗巴切夫斯基皆有斯拉夫血统,各于科学观念中掀起巨革命,唯彼此可拟。此二变革之所以极重,因其皆为宇宙观念之变……凭此二革命,作为人类知识对象、故为人类所重者之“宇宙”“大化”“万物”观念,已然崩解。——克利福德,w. K.
《演讲与论文集》(纽约,1901年),一卷,三百五十六、三百五十八页。
2023.我极其遗憾的是,先前我们相距更近时,我未能趁机更多地了解您在几何基础方面的研究;毫无疑问,这定会为我省去许多无用功,也会让我获得更多安宁——像我这样的性情,只要这类问题还有诸多方面有待思考,就难以安心。我自己在这件事上也取得了不少进展(尽管其他繁杂事务让我没多少时间投入其中);不过,我所走的路径,并未像您所说的那样达成预期目标,反而更多地引向了对几何真实性的质疑。诚然,我发现了许多或许会被众人当作证明的东西,但在我看来毫无证明力——例如,若能证明存在一个直线三角形,其面积大于任何给定的曲面,那么我就能严格地建立起整个几何学。如今,大多数人无疑会将这一点视为公理,但我不会;可以想象,无论三角形的顶点选得多么遥远,其面积或许总会低于某个限度。我还发现了其他一些类似的定理,但没有一个能让我满意。——高斯
致鲍耶的信(1799年);《全集》,第8卷(哥廷根,1900年),第159页。
昔吾与君相距较近,未及多闻君于几何基础之研,深以为憾。不然,必省我诸多徒劳,赐我更多安宁——如我之性情,此类事若尚有诸多待思,终难安也。吾于此亦稍有进益(虽他务繁杂,少暇及此),然所行之路,未达君所言之意,反多致疑几何之真。诚然,我有诸多发现,众人或视为证,然我观之,实无证明之力。譬如,若能证有直线三角形,其积大于任何给定曲面,则我可严建全几何。今众人必以此为公理,我则不然。可思议者,无论三角形顶点选得多远,其积或终在某限之下。我亦得他类定理,然无一能令我满意。——高斯
致鲍耶书(1799年);《全集》,八卷(哥廷根,1900年),百五十九页。
2024. 假设欧几里得几何不成立,很容易就能说明相似图形不存在;在这种情况下,等边三角形的角会随边长变化,我觉得这一点完全没有荒谬之处。角是边长的函数,而边长也是角的函数,当然,这个函数同时包含一个恒定的长度。说似乎能先验地给出一个恒定长度,这听起来有点矛盾,但我同样没觉得这有什么不一致的地方。其实,要是欧几里得几何不成立,那我们就能拥有一个通用的先验测量标准,这倒是挺理想的。
——高斯《致格灵的信》(1816年);《高斯全集》第8卷(哥廷根,1900年),第169页。
设欧氏几何不验,则相似之形不存,此易明也。是时,等边三角形之角随边而变,余观之,了无悖谬。角为边之函数,边亦为角之函数,此函数固含一恒长。谓恒长可先验而定,似属悖论,然余亦未见其抵牾。诚若欧氏几何非真,则吾辈可得通用先验之度量,斯为善也。
——高斯《与格灵书》(1816);《高斯全集》卷八(哥廷根,1900),页百六十九。
2025. 我越来越确信,我们几何学的必然真理是无法证明的,至少人类的理智无法向人类的理解力证明这一点。或许在另一个世界,我们能对空间的本质有其他的洞察,而这些洞察目前是我们无法获得的。在那之前,我们必须把几何学看作与算术(纯先验的)不同,而是和力学处于同等地位。
本章未完,点击下一页继续阅读。